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Differential Graded
Hopf Algebras I

1. Conventions and Notations
In the following k denotes an arbitrary field. All vector spaces, algebras, tensor products,
etc. are over k, unless otherwise stated. All occuring maps are linear unless otherwise
stated. We abbreviate “differential graded” by “dg”.

A dg-vector space is the same as a chain complex. of vector spaces, a dg-subspace
the same as a chain subcomplex. We write |v| for the degree of an element v, which is
then assumed to be homogeneous. We always regard graded objects as dg-objects with
zero differential. We regard k as a dg-vector space concentrated in degree 0.

If V , W are dg-vector spaces then V ⊗W is a dg-vector space with

|v ⊗ w| = |v|+ |w| , d(v ⊗ w) = d(v)⊗ w + (−1)|v|v ⊗ d(w) .

The twist map τ : V ⊗W →W ⊗ V given by

τ(v ⊗ w) = (−1)|v||w|w ⊗ v

is an isomorphism of dg-vector spaces.1 We use the Koszul sign convention: Whenever
homogeneous x, y are swapped the sign (−1)|x||y| is introduced. This results in a
well-defined Sn-action on V ⊗n via homomorphisms of dg-vector spaces, given by

σ · (v1 ⊗ · · · ⊗ vn) = εv1,...,vn(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

for homogeneous vi, where εv1,...,vn(σ) is the Koszul sign. (See Appendix A.2.)

2. Differential Graded Algebras
Definition 2.1.
(1) A dg-algebra is a dg-vector space A together with homomorphisms of dg-vector

spaces m : A⊗A→ A and u : k → A that make the following diagrams commute:

A⊗A⊗A A⊗A

A⊗A A

id⊗m

m⊗id m

m

k ⊗A A A⊗ k

A⊗A A A⊗A

u⊗id

∼ ∼

id⊗u

m m
∗Last change: May 20, 2019
1The naive twist map v ⊗ w 7→ w ⊗ v is not a homomorphism of dg-vector spaces.
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(2) The dg-algebra A is graded commutative if the following diagram commutes:

A⊗A A⊗A

A

τ

m m

(3) A dg-ideal in a dg-algebra A is a dg-subspace that is also an ideal.2

Remark 2.2. A dg-algebra is the same as a graded algebra A (in particular |1| = 0)
together with a differential d satisfying d(1) = 0 and the graded Leibniz rule

d(a · b) = d(a) · b+ (−1)|a|a · d(b) . (1)

(See Appendix A.3 for further remarks.)

Examples 2.3. (See Appendix A.4 for the explicit calculations and further examples.)

(1) Every algebra A is a dg-algebra concentrated in degree 0, in particular A = k.

(2) If V is a dg-vector space then T(V ) =
⊕

n≥0 V
⊗n is again a dg-vector space with

|v1 · · · vn| = |v1|+ · · ·+ |vn| ,

d(v1 · · · vn) =
n∑

i=1

(−1)|v1|+···+|vi−1|v1 · · · d(vi) · · · vn .

This makes T(V ) into a dg-algebra, with multiplication given by concatination

(v1 · · · vi) · (vi+1 · · · vn) = v1 · · · vn .

The inclusion V → T(V ) is a homomorphism of dg-vector spaces and if f : V → A
is any homomorphism of dg-vector spaces into a dg-algebra A then f extends
uniquely to a homomorphism of dg-algebras F : T(V )→ A:

T(V ) A

V

F

f

The dg-algebra T(V ) is the dg-tensor algebra on V .

Proposition 2.4 (Constructions with dg-algebras). Let A, B be a dg-algebras.

(1) The tensor product A⊗B becomes a dg-algebra with

1A⊗B = 1A ⊗ 1B and mA⊗B = (mA ⊗mB) ◦ (id⊗ τ ⊗ id) ,

i.e. (a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2.
2By an “ideal” we always mean a two-sided ideal.
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(2) The dg-algebra Aop is given by uAop = uA and mAop = mA ◦ τ , i.e.

1A = 1Aop and a ·op b = (−1)|a||b|b · a .

(3) If I is a dg-ideal in A then A/I inherits the structure of a dg-algebra

(4) If A is a dg-algebra then Z(A) is a graded subalgebra of A, B(A) is a graded ideal
in Z(A) and H(A) is hence a graded algebra.

Proof. See Appendix A.5.

Lemma 2.5. An ideal I in a dg-algebra A is a dg-ideal if and only if I is generated
by homogeneous elements xα with d(xα) ∈ I for every α.

Proof. See Appendix A.6.

Definition 2.6. The graded commutator in a dg-algebra A is the unique bilinear
extension of

[a, b] := ab− (−1)|a||b|ba .

(See Appendix A.7 for a remark.)

Example 2.7. Let V be a dg-vector space. The ideal

I :=
(
[v, w]

∣∣ v, w ∈ V are homogeneous
)

is a dg-ideal in T(V ), and the quotient Λ(V ) := T(V )/I is the dg-symmetric algebra
on V . (See Appendix A.8 for the explicit calculations and further remarks about Λ(V ).)

3. Differential Graded Coalgebras
Definition 3.1.

(1) A dg-coalgebra is a dg-vector space C together with homomorphisms of dg-vector
spaces ∆: C → C ⊗ C and ε : C → k that make the following diagrams commute:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆

∆⊗id

C ⊗ C C C ⊗ C

k ⊗ C C C ⊗ k

ε⊗id

∆ ∆

id⊗ε

∼ ∼

(2) The dg-coalgebra C is graded cocommutative if the following diagram com-
mutes:

C

C ⊗ C C ⊗ C

∆ ∆

τ
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(3) A dg-coideal in a dg-coalgebra C is a dg-subspace that is a coideal.3

Remark 3.2. A dg-coalgebra is the same as a graded coalgebra C together with a
differential d such that ε vanishes on B0(C) and

∆(d(c)) =
∑
(c)

d(c(1))⊗ c(2) + (−1)|c(1)|c(1) ⊗ d(c(2)) . (2)

(See Appendix A.9 for further remarks.)

Example 3.3. For any dg-vector space V the induced dg-vector space T(V ) becomes
a dg-coalgebra with the deconcatination

∆: T(V )→ T(V )⊗ T(V ) , v1 · · · vn 7→
n∑

i=0

v1 · · · vi ⊗ vi+1 · · · vn ,

ε : T(V )→ k , v1 · · · vn 7→

{
1 if n = 0 ,

0 otherwise .

(See Appendix A.10 for the explicit calculations.)

Proposition 3.4 (Constructions with dg-coalgebras). Let C, D be dg-coalgebras.

(1) The tensor product C ⊗D is again a dg-coalgebra with

εC⊗D(c⊗ d) = ε(c)ε(d) ,

∆C⊗D(c⊗ d) =
∑

(c),(d)

(−1)|c(2)||d(1)|(c(1) ⊗ d(1))⊗ (c(2) ⊗ d(2)) .

(2) If I is a dg-coideal in C then C/I inherits a dg-coalgebra structure.

(3) If C is a dg-coalgebra then Z(C) is a graded subcoalgebra of C, B(C) is a graded
coideal in Z(C) and H(C) is hence a graded coalgebra.

Proof. See Appendix A.11.

4. Differential Graded Bialgebras
Definition 4.1.

(1) A dg-bialgebra is a tuple (B,m, u,∆, ε) so that (B,m, u) is a dg-algebra, (B,∆, ε)
is a dg-coalgebra and ∆, ε are homomorphisms of dg-algebras. (See Appendix A.12
for remarks about this definition.)

(2) A dg-biideal is a dg-subspace that is both a dg-ideal and a dg-coideal.

3By “coideal” we always mean a two-sided coideal.
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Remark 4.2. The compatibility of the multiplication and comultiplication of B means

∆(bc) =
∑

(b),(c)

(−1)|b(2)||c(1)|b(1)c(1) ⊗ b(2)c(2) .

Warning 4.3. A dg-bialgebra does in general not have an underlying bialgebra
structure: The comultiplication ∆: B → B ⊗ B is a homomorphism of dg-algebras
into B ⊗ B but not necessarily an algebra homomorphism into the sign-less tensor
product B ⊗k B. We will see an explicit counterexample in Example 5.7.

Proposition 4.4 (Constructions with dg-bialgebras). Let B, B be dg-bialgebras.

(1) If I is a dg-biideal in B then B/I inherits a dg-bialgebra structure.

(2) The cycles Z(B) form a graded sub-bialgebra of B, B(B) is a graded biideal in Z(B)
and H(B) is hence a graded bialgebra.

Proof. See Appendix A.13

5. Differential Graded Hopf Algebras
Definition 5.1.

(1) An antipode for a dg-bialgebra H is a homomorphism of dg-vector spaces

S : H → H

that makes the following diagram commute:

H ⊗H H ⊗H

H k H

H ⊗H H ⊗H

S⊗id

m∆

ε

∆

u

id⊗S

m

(3)

If H admits an antipode then it is a dg-Hopf algebra.

(2) A dg-Hopf ideal in a dg-Hopf algebra H is a dg-biideal I with S(I) ⊆ I.

Warning 5.2. A dg-Hopf algebra need not have an underlying Hopf algebra structure.

Remark 5.3. Let H be a dg-Hopf algebra.

(1) The commutativity of the diagram (3) means more explicitely that∑
(h)

S(h(1))h(2) = ε(h)1H and
∑
(h)

h(1)S(h(2)) = ε(h)1H .

(No additional signs occur because |S| = 0.)
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(2) One can again characterize S using the convolution product on Homk(C,A) (see
Appendix A.14). This then shows in particular the uniqueness of S.

Proposition 5.4 (Constructions with dg-Hopf algebras). Let H, H be dg-Hopf alge-
bras.

(1) If I is a dg-Hopf ideal in H then H/I inherits a dg-Hopf algebra structure.

(2) The graded bialgebra H(H) is a graded Hopf algebra with antipode H(SH).

Proof. See Appendix A.15.

Example 5.5. Let V be a dg-vector space. The maps

V → T(V )⊗ T(V ) , v 7→ v ⊗ 1 + 1⊗ v ,
V → k , v 7→ 0 ,

V → T(V )op , v 7→ −v

are homomorphisms of dg-vector spaces and thus induce homomorphisms of dg-algebras

∆: T(V )→ T(V )⊗ T(V ) ,

ε : T(V )→ k ,

S : T(V )→ T(V )op .

These homomorphisms are explicitely given by

∆(v1 · · · vn) =
n∑

p=0

∑
σ∈Sh(p,n−p)

εv1,...,vn(σ
−1)vσ(1) · · · vσ(p) ⊗ vσ(p+1) · · · vσ(n) ,

ε(v1 · · · vn) =

{
1 if n = 0 ,

0 otherwise ,

S(v1 · · · vn) = (−1)
∑

1≤i<j≤n|vi||vj |(−1)nvn · · · v1

for homogeneous vi, where S is viewed as a map T(V ) → T(V ) and Sh(p, q) ⊆ Sp+q

denotes the set of p-q-shuffles. These maps make T(V ) into a dg-Hopf algebra. (See
Appendix A.16 for the explicit calculations.)

Example 5.6 (Quotients of dg-Hopf algebras). Let V be a dg-vector space. The
dg-algebra Λ(V ) = T(V )/I from Example 2.7 inherits from T(V ) the structure of a
dg-Hopf algebra because the dg-ideal I is a dg-Hopf ideal in T(V ) (see Appendix A.17).

Example 5.7 (Exterior Algebra). Let V be a vector space. We regard V as a dg-vector
space concentrated in degree 1. Then Λ(V ) =

∧
(V ) as graded algebras whence

∧
(V )

is a graded Hopf algebra. But for char k 6= 2 and V 6= 0 there exists no bialgebra
structure on

∧
(V ) (see Appendix A.18).
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Example 5.8 (Homology of dg-Hopf algebras). Let V be a dg-vector space.

(1) The inclusion V → T(V ) is a homomorphism of dg-vector spaces and thus induces
a homomorphism of graded vector spaces H(V )→ H(T(V )), which in turn induces
a homomorphism of graded algebras

α : T(H(V ))→ H(T(V )) , [v1] · · · [vn] 7→ [v1 · · · vn]

where v1, . . . , vn ∈ Z(V ). We see on representatives that α is a homomorphism of
graded Hopf algebras. We can write α as

H(T(V )) = H

(⊕
d≥0

V ⊗d

)
∼=
⊕
d≥0

H
(
V ⊗d

) ∼=⊕
d≥0

H(V )⊗d = T(H(V ))

which shows that α is an isomorphism.

(2) If char(k) = 0 then also H(Λ(V )) ∼= Λ(H(V )): We get again a canonical homomor-
phism of graded Hopf algebras

β : Λ(H(V ))→ H(Λ(V )) , [v1] · · · [vn] 7→ [v1 · · · vn]

where v1, . . . , vn ∈ Z(V ). The symmetrization map

s : Λ(V )→ T(V ) , v1 · · · vn 7→
1

n!

∑
σ∈Sn

σ · (v1 ⊗ · · · ⊗ vn)

is a section for the projection p : T(V )→ Λ(V ) and a homomorphism of dg-vector
spaces (see Appendix A.19). Together with the projection p̃ : T(H(V ))→ Λ(H(V ))
and symmetrization map s̃ : Λ(H(V ))→ T(H(V )) we have the following diagram:

T(H(V )) H(T(V ))

Λ(H(V )) H(Λ(V ))

α

p̃

α−1

H(p)s̃

β

H(s)

β′

We have β = H(p) ◦ α ◦ s̃, and β′ := p̃ ◦ α−1 ◦ H(s) is an inverse to β (see
Appendix A.19). This shows that β is an isomorphism.
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6. Differential Graded Lie Algebras
Let char(k) = 0.

Definition 6.1.

(1) A dg-Lie algebra is a dg-vector space g together with a homomorphism of
dg-vector spaces [−,−] : g⊗g→ g such that [−,−] is graded skew symmmetric
in the sense that the diagram

g⊗ g g⊗ g

g

τ

[−,−] −[−,−]

commutes, and such that [x,−] is for every homogeneous x a graded derivation.

(2) A dg-Lie ideal in a dg-Lie algebra g is a dg-subspace with [g, I] ⊆ I.

Remark 6.2. That g is a dg-Lie algebra means that

[gi, gj ] ⊆ gi+j ,

[x, y] = −(−1)|x||y|[y, x] ,
[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]] , (4)
d([x, y]) = [d(x), y] + (−1)|x|[x, d(y)] .

We can rewrite (4) as the graded Jacobi identity∑
cyclic

(−1)|x||z|[x, [y, z]] = 0 .

Warning 6.3. A dg-Lie algebra need not have an underlying Lie algebra structure.

Example 6.4.

(1) Every dg-algebra A is a dg-Lie algebra when endowed with the graded commutator.

(2) In any dg-bialgebra B the subspace of primitive elements,

P(B) = {x ∈ B | ∆(x) = x⊗ 1 + 1⊗ x} ,

is a dg-Lie subalgebra of B.

(See Appendix A.20 for explicit calculations and another example.)

Lemma 6.5. Let g be a dg-Lie algebra.

(1) If I is a dg-Lie ideal in g then g/I inherits a dg-Lie algebra structure.
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(2) The cycles Z(g) form a graded Lie subalgebra of g, B(g) is a graded Lie ideal in Z(g)
and H(g) is thus a graded Lie algebra.

Proof. See Appendix A.21.

Definition 6.6. The universal enveloping dg-algebra of a dg-Lie algebra g is

U(g) = T(g)/
(
[x, y]T(g) − [x, y]g | x, y ∈ g homogeneous

)
.

Proposition 6.7.

(1) The composition i : g→ T(g)→ U(g) is a homomorphism of dg-Lie algebras.

(2) If A is any dg-algebra and f : g → A a homomorphism of dg-Lie algebras there
exists a unique homomorphism of dg-algebras F : U(g)→ A that extends f :

U(g) A

g

F

i
f

(3) The universal enveloping dg-algebra U(g) inherits from T(g) the structure of a
dg-Hopf algebra.

Proof. See Appendix A.22.

We will now show that H(U(g)) ∼= U(H(g)). For this we need a version of the
Poincaré–Birkhoff–Witt theorem (PBW theorem) for dg-Lie algebras and their universal
enveloping dg-algebras, which we formulate in Appendix A.23. We will also blackbox
the following consequences of the PBW theorem.

Corollary 6.8 (of the PBW theorem). Let g be a dg-Lie algebra.

(1) The canonical map g→ U(g) is injective.

(2) The dg-Lie algebra g can be retrieved from U(g) as P(U(g)) = g.

(3) If s : Λ(g)→ T(g) denotes the symmetrization map from Example 5.8 then

e : Λ(g)
s−−→ T(g)→ U(g)

is an isomorphism of dg-vector spaces (and even of dg-coalgebra).

Example 6.9 (Homology of U(g)). The inclusion g → U(g) is a homomorphism of
dg-Lie algebra and so induces a homomorphism of graded Lie algebras H(g)→ H(U(g)),
which in turn induces a homomorphism of graded algebras

γ : U(H(g))→ H(U(g)) , [x1] · · · [xn] 7→ [x1 · · ·xn]
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for x1, . . . , xn ∈ Z(g). We see on representatives that this is a homomorphism of
dg-Hopf algebras. It is an isomorphism: We denote the isomorphisms of dg-vector
spaces Λ(g)→ U(g) and Λ(H(g))→ U(H(g)) from Corollary 6.8 by e and ẽ. Together
with the isomorphism of graded algebras

β : Λ(H(g))→ H(Λ(g)) , [x1] · · · [xn] 7→ [x1 · · ·xn]

from Example 5.8 we get the following commutative diagram:

Λ(H(g)) U(H(g))

H(Λ(g)) H(U(g))

ẽ

∼

β ∼ γ

H(e)

∼

The arrows e, H(e), β are isomorphisms, hence γ is one.

Remark 6.10.

(1) If H is a dg-Hopf algebra then H(P(H)) ∼= P(H(H)). (This statement can be found
without proof in [Lod92, Theorem A.9].)

(2) If H is a graded cocommutative connected4 dg-Hopf algebra then a version of the
Cartier–Milnor–Moore theorem asserts that H ∼= U(P(H)). Together with Corol-
lary 6.8 this results in an equivalence between the categories of dg-Lie algebras and
graded cocommutative connected dg-Hopf algebras, see [Qui69, Appendix B,Theo-
rem 4.5].

4The connectedness is defined in terms of the underlying dg-coalgebra, not that of the dg-algebra.
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A. Calculations, Proofs and Remarks
A.1. More Conventions and Notations
A map f : V → W is graded of degree d = |f | if f(Vn) ⊆ Vn+d for all n. The
differential d is a graded map of degree −1. If f : V → V ′, g : W → W ′ are graded
maps then f ⊗ g : V ⊗ V ′ → W ⊗W ′ is the graded map of degree |f ⊗ g| = |f |+ |g|
given by

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w) .

The differential of V ⊗W is given by

dV⊗W = dV ⊗ id + id⊗ dW .

If f , g are homomorphisms of dg-vector spaces then so is f ⊗ g. For graded maps

f1 : V → V ′, g1 : W →W ′, f2 : V
′ → V ′′, g2 : W

′ →W ′′

we have
(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (−1)|g2||f1|(f1 ◦ f2)⊗ (g1 ⊗ g2) .

If V , W are dg-vector spaces then Hom(V,W ) is the dg-vector space with

Hom(V,W )n = {graded maps V →W of degree n} ,
d(f) = d ◦ f − (−1)|f |f ◦ d .

The spaces Hom(V,W )n are linearly independent in Homk(V,W ), in the sense that the
sum

∑
n Hom(V,W )n is direct. We therefore regard Hom(V,W ) =

⊕
n Hom(V,W )n

as a linear subspace of Homk(V,W ).

A.2. The Koszul Sign
We have for every i = 1, . . . , n− 1 a twist map

τi : V
⊗n → V ⊗n ,

v1 ⊗ · · · ⊗ vn 7→ v1 ⊗ · · · ⊗ τ(vi ⊗ vi+1)⊗ · · · ⊗ vn
7→ (−1)|vi||vi+1|v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn .

The group Sn is generated by the simple reflections σ1, . . . , σn−1 with relations

σ2
i = 1 for i = 1, . . . , n− 1 ,

σiσj = σjσi for |i− j| ≥ 2 ,

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2 .

We check that the twist maps τ1, . . . , τn−1 satisfy these relations, which shows that Sn
acts on V ⊗n such that si acts via τi: We have

τ2i (v1 ⊗ · · · ⊗ vn) = (−1)|vi||vi+1|τi(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · vn) = v1 ⊗ · · · ⊗ vn
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and thus τ2i = 1. If |i− j| ≥ 2 then

τiτj(v1 ⊗ · · · ⊗ vn)
= (−1)|vi||vi+1|+|vj ||vj+1|v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vj+1 ⊗ vj ⊗ · · · ⊗ vn
= τjτi(v1 ⊗ · · · ⊗ vn)

and thus τiτj = τjτi. We also have

τiτi+1τi(v1 ⊗ · · · ⊗ vn)
= (−1)|vi||vi+1|τiτi+1(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ vi+2 ⊗ · · · ⊗ vn)
= (−1)|vi||vi+1|+|vi||vi+2|τi(v1 ⊗ · · · ⊗ vi+1 ⊗ vi+2 ⊗ vi ⊗ · · · ⊗ vn)
= (−1)|vi||vi+1|+|vi||vi+2|+|vi+1||vi+2|v1 ⊗ · · · ⊗ vi+2 ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn

and similarly
τi+1τiτi+1(v1 ⊗ · · · ⊗ vn)

= (−1)|vi+1||vi+2|τi+1τi(v1 ⊗ · · · ⊗ vi ⊗ vi+2 ⊗ vi+1 ⊗ · · · ⊗ vn)
= (−1)|vi||vi+2|+|vi+1||vi+2|τi+1(v1 ⊗ · · · ⊗ vi+2 ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn)
= (−1)|vi||vi+1|+|vi||vi+2|+|vi+1||vi+2|v1 ⊗ · · · ⊗ vi+2 ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn .

Therefore τiτi+1τi = τi+1τiτi+1. We now have the desired action of Sn on V ⊗n. The
twist maps τi are homomorphisms of dg-vector spaces whence Sn acts by homomor-
phisms of dg-vector spaces.

Without the signs the action of Sn on V ⊗n would be given by

σ · (v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

(so that the tensor factor vi it moved to the σ(i)-th position). The above action of Sn
on V ⊗n is hence given by

σ · (v1 ⊗ · · · ⊗ vn) = εv1,...,vn(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

with signs εv1,...,vn(σ) ∈ {1,−1}.

A.3. Remark 2.2

(1) If A is a graded algebra then a graded map δ : A→ A is a derivation if

δ ◦m = m ◦ (δ ⊗ id + id⊗ δ) ;
more explicitely,

δ(ab) = δ(a)b+ (−1)|δ||a|aδ(b) .

The compatibility condition (1) in the definition of a dg-algebra thus states that
the differential d is a derivation for A.
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(2) We see that there are two equivalent ways to make a graded vector space into a
dg-algebra:

graded
vector spaces

graded
algebras

dg-vector spaces dg-algebras

multiplication

differential differential

multiplication

(3) The graded commutativity of A means ab = (−1)|a||b|ba. If |a| is even or |b| is even
then ab = ba; if |a| is odd then a2 = −a2 and thus a2 = 0 if char(k) 6= 2.

(4) A homomorphism f of dg-algebras is the same as a homomorphism of the underlying
graded algebras that commutes with the differentials. (No additional signs occur
since |f | = 0.)

A.4. Examples 2.3
(2) It remains to check the compatibility of the multiplication and dg-structure of T(V ):

It holds that 1T(V ) ∈ T(V )0 with d(1T(V )) = 0. Furthermore

|v1 · · · vn · w1 · · ·wm| = |v1|+ · · ·+ |vn|+ |w1|+ · · ·+ |wm|
= |v1 · · · vn|+ |w1 · · ·wm|

and
d(v1 · · · vn · w1 · · ·wm)

=

n∑
i=1

(−1)|v1|+···+|vi−1|v1 · · · d(vi) · · · vn · w1 · · ·wm

+

m∑
j=1

(−1)|v1|+···+|vn|+|w1|+···+|wj−1|v1 · · · vn · w1 · · · d(wj) · · ·wm

= d(v1 · · · vn) · w1 · · ·wm + (−1)|v1|+···+|vn|v1 · · · vn · d(w1 · · ·wm)

= d(v1 · · · vn) · w1 · · ·wm + (−1)|v1···vn|v1 · · · vn · d(w1 · · ·wm) .

This shows that T(V ) is indeed a dg-algebra.
Let A be another dg-algebra and f : V → A a homomorphism of dg-vector spaces
an let F : T(V )→ A be the unique extension of f to an algebra homomorphism,
given by F (v1 · · · vn) = f(v1) · · · f(vn). The algebra homomorphism F is a homo-
morphism of graded algebras because

|F (v1 · · · vn)| = |f(v1) · · · f(vn)|
= |f(v1)|+ · · ·+ |f(vn)|
= |v1|+ · · ·+ |vn|
= |v1 · · · vn| .
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It is also a homomorphism of dg-vector spaces because

d(F (v1 · · · vn)) = d(f(v1) · · · f(vn))

=

n∑
i=1

(−1)|f(v1)|+···+|f(vi−1)|f(v1) · · · d(f(vi)) · · · f(vn)

=

n∑
i=1

(−1)|v1|+···+|vi−1|f(v1) · · · f(d(vi)) · · · f(vn)

= F

( n∑
i=1

(−1)|v1|+···+|vi−1|v1 · · · d(vi) · · · vn
)

= F (d(v1 · · · vn)) .

(3) For any dg-vector space V the algebra structure of Endk(V ) restricts to a dg-algebra
structure on End(V ) = Hom(V, V ):
It holds that idV ∈ End(V )0 and if f, g ∈ End(V ) are graded maps then f ◦ g is
again a graded map Therefore End(V ) is a subalgebra of Endk(V ). If f, g ∈ End(V )
are homogeneous then |f ◦g| = |f |+ |g| so End(V ) is a graded algebra. We see from

d(f ◦ g) = d ◦ f ◦ g − (−1)|f◦g|f ◦ g ◦ d
= d ◦ f ◦ g − (−1)|f |+|g|f ◦ g ◦ d
= d ◦ f ◦ g − (−1)|f |f ◦ d ◦ g + (−1)|f |f ◦ d ◦ g − (−1)|f |+|g|f ◦ g ◦ d
= (d ◦ f − (−1)|f |d ◦ f) ◦ g + (−1)|f |f ◦ (d ◦ g − (−1)|g|g ◦ d)
= d(f) ◦ g + (−1)|f |f ◦ d(g)

and
d(idV ) = d ◦ idV − idV ◦d = d− d = 0

that End(V ) is a dg-algebra.

A.5. Proposition 2.4
(3) The quotient A/I is a dg-vector space and an algebra and the compatibility of

these structures can be checked on representatives.

(4) The cycles Z(A) form a graded subspace with 1 ∈ Z(A) and if a, b ∈ Z(A) are
homogeneous then

d(a · b) = d(a) · b+ (−1)|a|a · d(b) = 0

and hence ab ∈ Z(A). The boundaries B(A) form a graded subspace and if a ∈ Z(A)
and b ∈ B(B) are homogeneous with b = d(a′) then

b · a = d(a′) · a = d(a · a′)− (−1)|a|a′ · d(a) = d(a · a′)

and hence ba ∈ B(A). Simlarly ab ∈ B(A).
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Warning A.1. If A⊗kB is the sign-less tensor product with (a⊗b)(a′⊗b′) = aa′⊗bb′
then A ⊗ B 6= A ⊗k B as algebras, i.e. the underlying algebra of A ⊗ B is not the
tensor product of the underlying algebras of A and B. The underlying algebra of Aop

is similarly not the opposite of the underlying algebra of A.

A.6. Lemma 2.5
That I is a graded ideal if and only if it is generated by homogeneous elements is
well-known, see [Lan02, IX, 2.5] or [Bou89, II.§11.3]. It remains to show that d(I) ⊆ I
if d(xα) ∈ I for every α: The ideal I is spanned by axαb with a, b ∈ A homogeneous,
and

d(axαb) = d(a)xαb+ (−1)|a|ad(xα)b+ (−1)|a|+|xα|axαd(b) ∈ I

since xα, d(xα) ∈ I.

A.7. Definition 2.6
We have for homogeneous a, b that [a, b] = 0 if and only if a, b graded commute
with each other. If A is a dg-algebra and |a| is even then [a, a] = 0. But if |a| is
odd then [a, a] = 2a2. This means in particular that the graded commutator of an
element with itself does not necessarily vanish (because not every element need to
graded-commute with itself).

A.8. Example 2.7
(1) The ideal I is a dg-ideal as the generators [v, w] are homogeneous and (by Exam-

ple 6.4)
d([v, w]) = [d(v), w] + (−1)|v|[v, d(w)] ∈ I .

(2) If S is a graded commutative dg-algebra, f : V → S a homomorphism of dg-vector
spaces then f extends uniquely to a homomorphism of dg-algebras F : Λ(V )→ S:

Λ(V ) S

V

F

f

(3) Let A and B be two dg-algebras. If C is any other dg-algebra and if f : A → C
and g : B → C are two homomorphisms of dg-algebras whose images graded-
commute, in the sense that

f(a)g(b) = (−1)|a||b|g(b)f(a)

for all a ∈ A, b ∈ B, then the linear map

ϕ : A⊗B → C , a⊗ b 7→ f(a)g(b)
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is again a homomorphism of dg-algebras. The inclusions i : A→ A⊗B, a 7→ a⊗ 1
and j : B : B → A⊗ B, b 7→ 1⊗ b are homomorphisms of dg-algebras. For every
homomorphism of dg-algebras ϕ : A⊗B → C the compositions ϕ ◦ i : A→ A⊗B
and ϕ : j : B → A ⊗ B are again homomorphisms of dg-algebras. This gives a
one-to-one correspondencehomomorphisms of dg-algebras

f : A→ C, g : B → C
whose images graded-commute

←→
homomorphisms

of dg-algebras
ϕ : A⊗B → C

 ,

(f, g) 7−→ (a⊗ b 7→ f(a)g(b)) ,

(ϕ ◦ i, ϕ ◦ j)←−[ ϕ .

(4) It follows for any two dg-vector spaces V and W that

Λ(V ⊕W ) ∼= Λ(V )⊗ Λ(W )

since we have for every dg-algebra A natural bijections

{homomorphisms of dg-algebras Λ(V ⊕W )→ A}
∼= {homomorphisms of dg-vector spaces V ⊕W → A}
∼= {(f, g) | homomorphisms of dg-vector spaces f : V → A, g : W → A}
∼= {(ϕ,ψ) | homomorphisms of dg-algebras ϕ : Λ(V )→ A, ψ : Λ(W )→ A}
∼= {homomorphisms of dg-algebras Λ(V )⊗ Λ(W )→ A} .

More explicitely, the inclusions V → V ⊕W and W → V ⊕W induce homomor-
phisms of dg-algebras Λ(V ) → Λ(V ⊕W ) and Λ(W ) → Λ(V ⊕W ) that give an
isohomomorphism of dg-algebras

Λ(V )⊗ Λ(W )
∼−−→ Λ(V ⊕W ) , v1 · · · vn ⊗ w1 · · ·wm 7→ v1 · · · vnw1 · · ·wm .

(5) Let V be a graded vector space.
If V is concentrated in even degrees then Λ(V ) = S(V ) and if V is concentrated in
odd degrees then Λ(V ) =

∧
(V ), with the grading of Λ(V ) and

∧
(V ) induced by

the one of V .
We have V = Veven ⊕ Vodd as graded vector spaces where Veven =

⊕
n V2n

and Vodd =
⊕

n V2n+1, and hence

Λ(V ) = Λ(Veven ⊕ Vodd) ∼= Λ(Veven)⊗ Λ(Vodd) = S(Veven)⊗
∧

(Vodd)

The graded algebra S(Veven) is concentrated in even degree and so it follows that
in the tensor product S(Veven) ⊗

∧
(Vodd) the simple tensors (strictly) commute,

i.e. (a⊗ b)(a′ ⊗ b) = aa′ ⊗ bb′. Hence

Λ(V ) ∼= S(Veven)⊗k

∧
(Vodd)

where ⊗k denotes the sign-less tensor product.
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(6) Let char(k) 6= 2 and let V be a dg-vector space with basis (xα)α∈A consisting of
homogeneous elements such that (A,≤) is linearly ordered. Then Λ(V ) admits as
a basis the ordered monomials

xn1
α1
· · ·xnt

αt
where t ≥ 0, α1 < · · · < αt, ni ≥ 1 and ni = 1 if |xαi

| is odd.5

To see this we use the above decomposition

Λ(V ) ∼= S(Veven)⊗k

∧
(Vodd) (5)

as graded algebras: We split up the given basis (xα)α∈A of V into a basis (xα)α∈A′

of Veven and (xα)α∈A′′ of Vodd (since all xα are homogeneous). Then S(Veven) has
as a basis the ordered monomials

xn1
α1
· · ·xnr

αr
where r ≥ 0, α1 < · · · < αr and ni ≥ 1 ,

and
∧
(Vodd) has as a basis the ordered wedges

xα1
∧ · · · ∧ xαs

where s ≥ 0, α1 < · · · < αs .

It follows that with (5) that Λ(V ) admits the basis

xn1
α1
· · ·xnr

αr
· xβ1

· · ·xβs
where


r, s ≥ 0, ni ≥ 1,
α1 < · · · < αr,
β1 < · · · < βs,

|xαi
| even, |xβj

| odd.

We can now rearrange these basis vectors into the desired form becaus the factors xni
αi

and xβj
commute.

A.9. Remark 3.2
(1) If C is a graded coalgebra then a graded map ω : C → C is a coderivation if

∆ ◦ ω = (ω ⊗ id + id⊗ ω) ◦∆ .

This means more explicitely that

∆(ω(c)) =
∑
(c)

ω(c(1))⊗ c(2) + (−1)|ω||c(1)|c(1) ⊗ ω(c(2)) .

The compability (2) means that the differential d (which is a graded map of
degree |d| = −1) is a coderivation.

(2) The graded cocommutativity of C means∑
(c)

c(1) ⊗ c(2) =
∑
(c)

(−1)|c(1)||c(2)|c(2) ⊗ c(1) .

(3) A homomorphism of dg-coalgebras is the same as a homomorphism of the underlying
graded coalgebras that commutes with the differentials.

(4) Every coalgebra C is a dg-coalgebra centered in degree 0, in particular C = k.
5The condition ni = 1 for |xαi | odd commes from the equality α2

i = [αi, αi]/2.
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A.10. Example 3.3
We have seen in the first talk that (T(C),∆, ε) is a coalgebra. We have for ev-
ery i = 0, . . . , n that

|v1 · · · vi ⊗ vi+1 · · · vn| = |v1 · · · vi|+ |vi+1 · · · vn|
= |v1|+ · · ·+ |vi|+ |vi+1|+ · · ·+ |vn|
= |v1|+ · · ·+ |vn| ,

so we have a graded coalgebra. We also have

d(∆(v1 · · · vn))

=

n∑
i=0

d(v1 · · · vi ⊗ vi+1 · · · vn)

=

n∑
i=0

(
d(v1 · · · vi)⊗ vi+1 · · · vn + (−1)|v1···vi|v1 · · · vi ⊗ d(vi+1 · · · vn)

)
=

n∑
i=0

(
i∑

j=1

(−1)|v1|+···+|vj−1|v1 · · · d(vj) · · · vi ⊗ vi+1 · · · vn

+ (−1)|v1···vi|
n∑

j=i+1

(−1)|vi+1|+···+|vj−1|v1 · · · vi ⊗ vi+1 · · · d(vj) · · · vn

)

=

n∑
i=0

(
i∑

j=1

(−1)|v1|+···+|vj−1|v1 · · · d(vj) · · · vi ⊗ vi+1 · · · vn

+

n∑
j=i+1

(−1)|v1|+···+|vj−1|v1 · · · vi ⊗ vi+1 · · · d(vj) · · · vn

)

= ∆

(
n∑

j=1

(−1)|v1|+···+|vj |v1 ⊗ · · · ⊗ d(vj)⊗ · · · ⊗ vn

)
= ∆(d(v1 · · · vn))

which shows that ∆ is a homomorphism of dg-vector spaces.

A.11. Proposition 3.4
(3) The quotient C/I is a dg-vector space and a coalgebra, and the compatibility of

these structures can be checked on representatives.

(4) If c ∈ Z(C) then
d(∆(c)) = ∆(d(c)) = ∆(0) = 0

because ∆ is a homomorphism of dg-vector spaces, and hence

∆(c) ∈ Z(C ⊗ C) = Z(C)⊗ Z(C) .
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This shows that Z(C) is a subcoalgebra of C. It is also a graded subspace of C
and hence a graded subcoalgebra.
For b ∈ B(C) with b = d(c) we have

∆(b) = ∆(d(c)) = d(∆(c)) = d

(∑
(c)

c(1) ⊗ c(2)
)

=
∑
(c)

d(c(1))⊗ c(2) + (−1)|c(1)|c(1)⊗d(c(2)) ∈ B(C)⊗ C + C ⊗ B(C) .

We also have
ε(b) = ε(d(c)) = d(ε(c)) = 0 .

This shows that B(C) is a coideal in C. It follows from the upcoming lemma that B
is also a coideal in Z(C). Then B(C) is a graded coideal in Z(C) because B(C) is
a graded subspace of Z(C).

Lemma A.2. Let C be a coalgebra and let B be a subcoalgebra of C. If I is a
coideal in C with I ⊆ B then I is also a coideal in B.

Proof. It follows from the inclusions I ⊆ B ⊆ C that

(C ⊗ I + I ⊗ C) ∩ (B ⊗B) = B ⊗ I + I ⊗B .

Hence

∆(I) = ∆(I) ∩∆(B) ⊆ (C ⊗ I + I ⊗ C) ∩ (B ⊗B) = B ⊗ I + I ⊗B .

Also εB(I) = εC(I) = 0.

A.12. Definition 4.1
One can also equivalently require m, u to be homomorphisms of dg-coalgebras:

Lemma A.3. Let B be a dg-vector space, (B,m, u) a dg-algebra and (B,∆, ε) a
dg-coalgebra. Then the following conditions are equivalent:

(1) ∆ and ε are homomorphisms of dg-algebras.

(2) m and u are homomorphisms of dg-coalgebras.

Proof. The same diagramatic proof as in the non-dg case (as seen in the second talk).

A.13. Proposition 4.4
(1) It follows from Proposition 2.4 and Proposition 3.4 that B/I is a dg-algebra and

dg-coalgebra. The compatibility can be checked on representatives.

(2) It follows from Proposition 2.4 and Proposition 3.4 that H(B) is again a dg-algebra
and dg-coalgebra, and the compatibility of these structures can be checked on
representatives.
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A.14. Remark 5.3
If C is a dg-coalgebra and A is a dg-algebra then the convolution product

f ∗ g = mA ◦ (f ⊗ g) ◦∆C

on Homk(C,A) makes Hom(C,A) into a dg-algebra:
We have 1Homk(C,A) = u ◦ ε ∈ Hom(C,A)0 because both uA and εC are homomor-

phisms of dg-vector spaces and thus of degree 0. If f, g ∈ Hom(C,A) are graded maps
then f ⊗ g is again a graded map and thus

f ∗ g = m ◦ (f ⊗ g) ◦∆

is a graded map as a composition of graded maps. This shows that Hom(C,A) is a
subalgebra of Homk(C,A).

We have

|f ∗ g| = |m ◦ (f ⊗ g) ◦∆| = |m|+ (|f |+ |g|) + |∆| = |f |+ |g|

so Hom(C,A) is a graded algebra with respect to the convolution product.
Furthermore

d(f ∗ g)
= d ◦ (f ∗ g)− (−1)|f∗g|(f ∗ g) ◦ d
= d ◦m ◦ (f ⊗ g)⊗∆− (−1)|f |+|g|m ◦ (f ⊗ g) ◦∆ ◦ d
= m ◦ dA⊗A ◦ (f ⊗ g)⊗∆− (−1)|f |+|g|m ◦ (f ⊗ g) ◦ dC⊗C ◦∆
= m ◦ (d⊗ id + id⊗ d) ◦ (f ⊗ g)⊗∆

− (−1)|f |+|g|m ◦ (f ⊗ g) ◦ (d⊗ id + id⊗ d) ◦∆
= m ◦ (d⊗ id) ◦ (f ⊗ g)⊗∆

+m ◦ (id⊗ d) ◦ (f ⊗ g)⊗∆

− (−1)|f |+|g|m ◦ (f ⊗ g) ◦ (d⊗ id) ◦∆
− (−1)|f |+|g|m ◦ (f ⊗ g) ◦ (id⊗ d) ◦∆

= m ◦ ((d ◦ f)⊗ g)⊗∆

+ (−1)|f |m ◦ (f ⊗ (d ◦ g))⊗∆

− (−1)|f |m ◦ ((f ◦ d)⊗ g) ◦∆
− (−1)|f |+|g|m ◦ (f ⊗ (g ◦ d)) ◦∆

= m ◦ ((d ◦ f − (−1)|f |f ◦ d)⊗ g)⊗∆

+ (−1)|f |m ◦ (f ⊗ (d ◦ g − (−1)|g|g ◦ d))⊗∆

= m ◦ (d(f)⊗ g) ◦∆+ (−1)|f |m ◦ (f ⊗ d(g))⊗∆

= d(f) ∗ g + (−1)|f |f ∗ d(g)
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because m and ∆ are commute with the differentials. Hence Hom(C,A) is a dg-algebra
with respect to the convolution product.

Now we need to explain why an inverse to idH in Hom(H,H) with respect to the
convolution product ∗ is again a homomorphism of dg-vector spaces. For this we use
the following result:

Lemma A.4. Let A be a dg-algebra and let a ∈ A be a homogeneous unit.

(1) The inverse a−1 is homogeneous of degree |a−1| = −|a|.

(2) If a is a cycle then so is a−1.

Proof.

(1) Let d = |a| and let a−1 =
∑

n a
′
n be the homogeneous decomposition of a−1. It

follows from 1 = ab =
∑

n aa
′
n that in degree zero, 1 = aa′−d. Thus a′−d is the

inverse of a, i.e. a−1 = a′−d ∈ A−d.

(2) It follows from

0 = d(1) = d(aa−1) = d(a)a−1 + (−1)|a|ad(a−1)

that (−1)|a|ad(a−1) = 0 because d(a) = 0. Hence d(a−1) = 0 as a is a unit.

The space Z0(Hom(V,W )) consists of the homomorphism of dg-vector spaces V →W .
It hence follows from Lemma A.4 that if f ∈ Z0(Hom(V,W )) admits an inverse g with
respect to the convolution product that again g ∈ Z0(Hom(V,W )).

A.15. Proposition 5.4
(1) It follows from Proposition 4.4 that H is a dg-bialgebra and the condition S(I) ⊆ I

ensures that S induces a homomorphism of dg-vector spaces S : H/I → H/I. The
antipode condition for S can now be checked on representatives.

(2) The homology H(H) is a dg-bialgebra by Proposition 4.4 and that H(SH) is an
antipode can be checked on representatives.

A.16. Example 5.5
The dg-coalgebra diagrams for (T(V ),∆, ε) can be checked on algebra generators
of T(V ) because all arrows in these diagrams are homomorphisms of dg-algebras. It
hence sufficies to check these diagrams for elements of V , where this is straightforward.

It remains to check the equalities∑
(h)

S(h(1))h(2) = ε(h)1H and
∑
(h)

h(1)S(h(2)) = ε(h)1H

for the monomials h = v1 · · · vn. If n = 0 then h = 1 and both equalities hold, so we
consider in the following the case n ≥ 1. Then ε(v1 · · · vn) = 0 so we have to show that
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in the sums
∑

(h) S(h(1))h(2) and
∑

(h) h(1)S(h(2)) all terms cancel out. We consider
for simplicity only the sum

∑
(h) S(h(1))h(2).6 We have

∆(v1 · · · vn) =
n∑

p=0

∑
σ∈Sh(p,n−p)

εv1,...,vn(σ
−1)vσ(1) · · · vσ(p) ⊗ vσ(p+1) · · · vσ(n) . (6)

Here
S(vσ(1) · · · vσ(p)) = (−1)p(−1)

∑
1≤i<j≤p|vσ(i)||vσ(j)|vσ(p) · · · vσ(1)

and thus

(m ◦ (S ⊗ id) ◦∆)(v1 · · · vn)

=

n∑
p=0

∑
σ∈Sh(p,n−p)

εv1,...,vn(σ
−1)(−1)p(−1)

∑
1≤i<j≤p|vσ(i)||vσ(j)|

· vσ(p) · · · vσ(1)vσ(p+1) · · · vσ(n) . (7)

We see that in (6) any two terms of the form

w1w2 · · ·wi ⊗ wi+1 · · ·wn and w2 · · ·wi ⊗ w1wi+1 · · ·wn

give in (7) the up to sign same term wi · · ·w2w1wi+1 · · ·wn. We now check that the
signs differ, so that in (7) both terms cancel out. This then shows that the sum (7)
becomes zero.

For 1 ≤ p ≤ n and σ ∈ Sh(p, n − p) with σ(p) < σ(1) the term associated
to vσ(1) · · · vσ(p) ⊗ v(p+1) · · · vσ(n) is given by

vσ(2) · · · vσ(p) ⊗ vσ(1)vσ(p+1) · · · vσ(n) = vτ(1) · · · vτ(p−1) ⊗ vτ(p) · · · vτ(n)

for the permuation ω ∈ Sh(p− 1, n− p+ 1) given by

ω = σ ◦ (1 2 · · · p) ,
i.e.

ω(i) =


σ(i+ 1) if 1 ≤ i ≤ p− 1 ,

σ(1) if i = p ,

σ(i) if p+ 1 ≤ i ≤ n .

We see from the Koszul sign rule that the signs εv1,...,vn(σ−1) and εv1,...,vn(ω−1) differ

6The author hasn’t actually checked the other sum.
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by the factor (−1)|vσ(1)||vσ(2)|+···+|vσ(1)||vσ(p)|. Therefore

εv1,...,vn(σ
−1)(−1)p(−1)

∑
1≤i<j≤p|vσ(i)||vσ(j)|

= εv1,...,vn(ω
−1)(−1)|vσ(1)||vσ(2)|+···+|vσ(1)||vσ(p)|(−1)p(−1)

∑
1≤i<j≤p|vσ(i)||vσ(j)|

= εv1,...,vn(ω
−1)(−1)p(−1)

∑
2≤i<j≤p|vσ(i)||vσ(j)|

= εv1,...,vn(ω
−1)(−1)p(−1)

∑
1≤i<j≤p−1|vω(i)||vω(j)|

= − εv1,...,vn(ω−1)(−1)p−1(−1)
∑

1≤i<j≤p−1|vω(i)||vω(j)| .

Thus the signs differ as claimed.

A.17. Example 5.6
We have

ε([v, w]) = ε
(
vw − (−1)|v||w|wv

)
= ε(vw)− (−1)|v||w|wv

= ε(v)ε(w)− (−1)|v||w|ε(w)ε(v)

= 0

as ε(v) = ε(w) = 0. The elements v and w are primitive whence [v, w] is primitive.
Therefore

∆([v, w]) = [v, w]⊗ 1 + 1⊗ [v, w] ∈ I ⊗ T(V ) + T(V )⊗ I .
Also

S([v, w]) = S
(
vw − (−1)|v||w|wv

)
= S(vw)− (−1)|v||w|S(wv)

= (−1)|v||w|wv − vw
= −

(
vw − (−1)|v||w|wv

)
= −[v, w]
∈ I .

A.18. Example 5.7
Suppose that there exists a bialgebra structure on E :=

∧
(V ). Then ε(v)2 = ε(v2) = 0

and thus ε(v) = 0 for all v ∈ V , so ker ε =
⊕

n≥1En =: I. Let v ∈ V . Then by the
counital axiom,

∆(v) ≡ v ⊗ 1 (mod E ⊗ I) and ∆(v) ≡ 1⊗ v (mod I ⊗ E)

and thus
∆(v) ≡ v ⊗ 1 + 1⊗ v (mod I ⊗ I) .
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It follows that

∆(v2) ≡ (v ⊗ 1 + 1⊗ v)2 (mod (v ⊗ 1)(I ⊗ I) + (1⊗ v)(I ⊗ I) + (I ⊗ I)2) ,

and therefore

∆(v2) ≡ v2 ⊗ 1 + 2v ⊗ v + 1⊗ v2 (mod I ⊗ I2 + I2 ⊗ I) .

Now v2 = 0 and thus

2v ⊗ v ≡ 0 (mod I ⊗ I2 + I2 ⊗ I) .

But 2 6= 0 and v 6= 0 hence 2v ⊗ v 6= 0 while v ⊗ v /∈ I ⊗ I2 + I2 ⊗ I, a contradiction.
(This proof is taken from [MO18] and partially from [Bou89, III.§11.3]).

A.19. Example 5.8
(1) The action of Sn on V ⊗n is by homomorphism of dg-vector spaces as mentioned in

Section 1 and shown in Appendix A.2. The symmetrization map

s̃ : T(V )→ T(V ) , v1 · · · vn 7→
1

n!

∑
σ∈Sn

σ · (v1 ⊗ · · · ⊗ vn)

therefore results in a homomorphism of dg-vector spaces s̃ : T(V ) → T(V ).7 It
follows that the factored map s : Λ(V ) → T(V ) is again a homomorphism of
dg-vector spaces.

(2) We observe that the diagrams

T(H(V )) H(T(V ))

Λ(H(V )) H(Λ(V ))

α

p̃ H(p)

β

and
T(H(V )) H(T(V ))

Λ(H(V )) H(Λ(V ))

α

s̃

β

H(s)

commute. Indeed, for representatives v1, . . . , vn ∈ Z(V ) the first diagram gives

[v1]⊗ · · · ⊗ [vn] [v1 ⊗ · · · ⊗ vn]

[v1] · · · [vn] [v1 · · · vn]

and the second diagram is given as follows:

1

n!

∑
σ∈Sn

ε(σ−1)[vσ(1)]⊗ · · · ⊗ [vσ(n)]
1

n!

∑
σ∈Sn

ε(σ−1)[vσ(1) ⊗ · · · ⊗ vσ(n)]

[v1] · · · [vn] [v1 · · · vn]

7This map is a projection of T(V ) on its dg-subspace of graded symmetric tensors.
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It follows that

ββ′ = βp̃α−1 H(s) = H(p)αα−1 H(s) = H(p)H(s) = idH(Λ(V ))

and similarly
β′β = p̃α−1 H(s)β = p̃α−1αs̃ = p̃s̃ = idΛ(H(V ))

A.20. Example 6.4
(1) If a, b ∈ A are homogeneous then [a, b] = ab − (−1)|a||b|ba is homogeneous of

degree |a|+ |b|, so [Ai, Aj ] ⊆ Ai+j for all i, j. Also

[a, b] = ab− (−1)|a||b|ba = −(−1)|a||b|
(
ba− (−1)|a||b|ab

)
= −(−1)|a||b|[b, a]

and

d([a, b]) = d
(
ab− (−1)|a||b|ba

)
= d(ab)− (−1)|a||b|d(ba)
= d(a)b+ (−1)|a|ad(b)− (−1)|a||b|

(
d(b)a+ (−1)|b|bd(a)

)
= d(a)b+ (−1)|a|ad(b)− (−1)|a||b|d(b)a− (−1)|a||b|+|b|bd(a)

= d(a)b+ (−1)|a|ad(b)− (−1)|a||d(b)|+|a|d(b)a− (−1)|d(a)||b|bd(a)
= d(a)b− (−1)|d(a)||b|bd(a) + (−1)|a|

(
ad(b)− (−1)|a||d(b)|d(b)a

)
= [d(a), b] + (−1)|a|[a, d(b)] .

We check the graded Jacobi identity for homogeneous a, b, c ∈ A. We have

[a, [b, c]] =
[
a, bc− (−1)|b||c|cb

]
= [a, bc]− (−1)|b||c|[a, cb]
= abc− (−1)|a||bc|bca− (−1)|b||c|

(
acb− (−1)|a||cb|cba

)
= abc− (−1)|a||bc|bca− (−1)|b||c|acb+ (−1)|a||cb|+|b||c|cba

= abc− (−1)|a|(|b|+|c|)bca− (−1)|b||c|acb+ (−1)|a|(|b|+|c|)+|b||c|cba

= abc− (−1)|a||b|+|a||c|bca− (−1)|b||c|acb+ (−1)|a||b|+|a||c|+|b||c|cba

and therefore

(−1)|a||c|[a, [b, c]] = (−1)|a||c|abc− (−1)|a||b|bca
− (−1)|a||c|+|b||c|acb+ (−1)|a||b|+|b||c|cba .
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It follows that∑
cyclic

(−1)|a||c|[a, [b, c]] =
∑

cyclic

(−1)|a||c|abc−
∑

cyclic

(−1)|a||b|bca

−
∑

cyclic

(−1)|a||c|+|b||c|acb+
∑

cyclic

(−1)|a||b|+|b||c|cba

=
∑

cyclic

(−1)|b||a|bca−
∑

cyclic

(−1)|a||b|bca

−
∑

cyclic

(−1)|a||c|+|b||c|acb+
∑

cyclic

(−1)|b||c|+|c||a|acb

= 0 .

(2) If a ∈ P(B) with homogeneous decomposition a =
∑

n an then

∆(a) = ∆

(∑
n

an

)
=
∑
n

∆(an)

but also
∆(a) = a⊗ 1 + 1⊗ a =

∑
n

(an ⊗ 1 + 1⊗ an) .

By comparing homogeneous components we see that ∆(an) = an ⊗ 1 + 1⊗ an for
all n. This means that all homogeneous components an are again primitive, which
shows that P(B) is a graded subspace of B. If a ∈ P(B) then

∆(d(a)) = d(∆(a))

= d(a⊗ 1 + 1⊗ a)
= d(a⊗ 1) + d(1⊗ a)
= d(a)⊗ 1 + (−1)|a|a⊗ d(1) + d(1)⊗ a+ (−1)|1|1⊗ d(a)
= d(a)⊗ 1 + 1⊗ d(a)

because |1| = 0 and d(1) = 0. Therefore P(B) is a dg-subspace of B.
If a, b ∈ P(B) then

∆(ab) = ∆(a)∆(b)

= (a⊗ 1 + 1⊗ a)(b⊗ 1 + 1⊗ b)
= (a⊗ 1)(b⊗ 1) + (a⊗ 1)(1⊗ b) + (1⊗ a)(b⊗ 1) + (1⊗ a)(1⊗ b)
= ab⊗ 1 + a⊗ b+ (−1)|a||b|b⊗ a+ 1⊗ ab .

If a, b are homogeneous then it follows that

∆([a, b]) = ∆
(
ab− (−1)|a||b|ba

)
= ∆(ab)− (−1)|a||b|∆(ba)
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= ab⊗ 1 + a⊗ b+ (−1)|a||b|b⊗ a+ 1⊗ ab
− (−1)|a||b|

(
ba⊗ 1 + b⊗ a+ (−1)|a||b|a⊗ b+ 1⊗ ba

)
= ab⊗ 1 + a⊗ b+ (−1)|a||b|b⊗ a+ 1⊗ ab
− (−1)|a||b|ba⊗ 1− (−1)|a||b|b⊗ a− a⊗ b− (−1)|a||b|1⊗ ba

=
(
ab− (−1)|a||b|ba

)
⊗ 1 + 1⊗

(
ab− (−1)|a||b|ba

)
= [a, b]⊗ 1 + 1⊗ [a, b]

which shows that [a, b] ∈ P(B). Thus P(B) is a dg-Lie subalgebra of B.

(3) If A is a graded algebra, then the graded subspace Der(A) ⊆ End(A) given by

Der(A)n := {derivations of A of degree n} ⊆ End(A)n

is a dg-Lie subalgebra of End(A):
Let δ, ε be graded derivations. Then for all homogeneous a, b ∈ A,

(δε)(ab) = δ(ε(ab))

= δ(ε(a)b+ (−1)|ε||a|aε(b))
= δ(ε(a)b) + (−1)|ε||a|δ(aε(b))
= δ(ε(a))b+ (−1)|ε(a)||δ|ε(a)δ(b)

+ (−1)|ε||a|
(
δ(a)ε(b) + (−1)|δ||a|aδ(ε(b))

)
= δ(ε(a))b+ (−1)|ε(a)||δ|ε(a)δ(b)

+ (−1)|ε||a|δ(a)ε(b) + (−1)|δ||a|+|ε||a|aδ(ε(b))

= δ(ε(a))b+ (−1)(|ε|+|a|)|δ|ε(a)δ(b)

+ (−1)|ε||a|δ(a)ε(b) + (−1)|δ||a|+|ε||a|aδ(ε(b))

= δ(ε(a))b+ (−1)|δ||ε|+|δ||a|ε(a)δ(b)

+ (−1)|ε||a|δ(a)ε(b) + (−1)|δ||a|+|ε||a|aδ(ε(b))

It follows that

(−1)|δ||ε|(εδ)(ab) = (−1)|δ||ε|ε(δ(a))b+ (−1)|ε||a|δ(a)ε(b)
+ (−1)|δ||ε|+|δ||a|ε(a)δ(b) + (−1)|δ||ε|+|δ||a|+|ε||a|aε(δ(b))

and therefore

[δ, ε](ab) = (δε− (−1)|δ||ε|εδ)(ab)
= (δε)(ab)− (−1)|δ||ε|(εδ)(ab)
= δ(ε(a))b+ (−1)|δ||ε|+|δ||a|ε(a)δ(b)

+ (−1)|ε||a|δ(a)ε(b) + (−1)|δ||a|+|ε||a|aδ(ε(b))
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− (−1)|δ||ε|ε(δ(a))b− (−1)|ε||a|δ(a)ε(b)
− (−1)|δ||ε|+|δ||a|ε(a)δ(b)− (−1)|δ||ε|+|δ||a|+|ε||a|aε(δ(b))

= δ(ε(a))b− (−1)|δ||ε|ε(δ(a))b
+ (−1)|δ||a|+|ε||a|aδ(ε(b))− (−1)|δ||ε|+|δ||a|+|ε||a|aε(δ(b))

= δ(ε(a))b− (−1)|δ||ε|ε(δ(a))b
+ (−1)|δ||a|+|ε||a|(aδ(ε(b))− (−1)|δ||ε|aε(δ(b))

)
= [δ, ε](a)b+ (−1)|[δ,ε]||a|a[δ, ε](b) .

This shows that [δ, ε] ∈ Der(A), so that Der(A) is a graded Lie subalgebra of End(A).
If δ ∈ Der(A) is homogeneous then

d(δ) = d ◦ δ − (−1)|δ|δ ◦ d = [d, δ]

is again a graded derivation, and hence Der(A) is a dg-subspace of End(A).

A.21. Lemma 6.5
(1) The quotient g/I is again a dg-vector spaces and a Lie algebra. The compatibility

of these structures can be checked on generators.

(2) The cycles Z(g) form a graded subspace of g. For homogeneous x, y ∈ Z(g),

d([x, y]) = [d(x), y] + (−1)|x|[x, d(y)] = [0, y] + (−1)|x|[x, 0] = 0 ,

so Z(g) is indeed a graded Lie subalgebra of g. The boundaries B(g) form a graded
subspace of Z(g). If x ∈ B(g) with x = d(x′), where x′ ∈ g is homogeneous, then
for every y ∈ Z(g),

[x, y] = [d(x′), y] = d([x′, y])− (−1)|x
′|[x′, d(y)︸︷︷︸

=0

] = d([x′, y]) ∈ B(g) .

Thus B(g) is a graded Lie ideal in Z(g).

A.22. Proposition 6.7
(1) This follows from the choice of ideal I.

(2) This is a combination of the universal properties of the dg-tensor algebra and that
of the quotient dg-algebra.

(3) We check that the given ideal I is a dg-Hopf ideal. It is generated by homogenous
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elements which satisfy

d([x, y]T(g) − [x, y]g)

= d([x, y]T(g))− d([x, y]g)
= [d(x), y]T(g) + (−1)|x|[x, d(y)]T(g) − [d(x), y]g − (−1)|x|[x, d(y)]g

=

(
[d(x), y]T(g) − [d(x), y]g

)
+ (−1)|x|

(
[x, d(y)]T(g) − [x, d(y)]g

)
∈ I

so it is a dg-ideal. Also

ε([x, y]T(g) − [x, y]g) = ε([x, y]T(g))− ε([x, y]g) = 0− 0 = 0

because [x, y]T(g) and [x, y]g are homogoneous of degree ≥ 1,

∆([x, y]T(g) − [x, y]g)

= ∆([x, y]T(g))−∆([x, y]g))

= [x, y]T(g) ⊗ 1 + 1⊗ [x, y]T(g) − [x, y]g ⊗ 1− 1⊗ [x, y]g

= ([x, y]T(g) − [x, y]g)⊗ 1 + 1⊗ ([x, y]T(g) − [x, y]g)

∈ I ⊗ T(g) + T(g)⊗ I

since both [x, y]T(g) and [x, y]g are primitive, and finally

S([x, y]T(g) − [x, y]g) = S([x, y]T(g))− S([x, y]g) = −[x, y]T(g) + [x, y]g ∈ I .

Thus the dg-ideal I is already a dg-Hopf ideal.

A.23. The Poincaré–Birkhoff–Witt theorem
Recall A.5. If g is a Lie algebra with basis (xα)α∈A where (A,≤) is linearly ordered
then the PBW theorem asserts that U(g) has as a basis the ordered monomials

xn1
α1
· · ·xnt

αt
where t ≥ 0, α1 < · · · < αt and ni ≥ 1 .

This shows in particular that the Lie algebra homomorphism g → U(g) is injective,
and it also follows that P(U(g)) = g. Moreover, grU(g) ∼= S(g) where grU(g) denotes
the associated graded for the standard filtration of U(g).

Theorem A.6 (dg-PBW theorem). Let g be a dg-Lie algebra with basis (xα)α∈A

consisting of homogeneous elements such that (A,≤) is linearly ordered. Then U(g)
has as a basis all ordered monomials

xα1
· · ·xαn

where t ≥ 0, α1 < · · · < αt, ni ≥ 1 and ni = 1 if |xαi
| is odd.

We will not attempt to prove this theorem here, and instead refer to [Qui69, Ap-
pendix B,Theorem 2.3] and [FHT01, §21(a)].
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